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ABSTRACT

Schmidt decomposition has been used in the local unitary (LU) classifica-
tion of bipartite quantum states for some time. In order to generalize the
LU classification of bipartite quantum states into multipartite quantum
states, higher order singular value decomposition (HOSVD) is introduced
but specific examples have not been explicitly worked out. In this peda-
gogical paper, we would like to work out such details in two qubits since
the LU classification of two qubits is well known. We first demonstrate
the method of HOSVD in two-qubit systems and discuss its properties.
In terms of the LU classification of two-qubit states, some subtle differ-
ences in the stabilizer groups of entanglement classes are noticed when
Schmidt decomposition is substituted by HOSVD. To reconcile the dif-
ferences between the two, further studies are needed.

Keywords: Higher order singular value decomposition, two qubits, local
unitary operation.
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1. Introduction

Classical computers process information using binaries which are determin-
istic, i.e. either 0 or 1 but not both at the same time. These binaries are called
bits. In the early 1980s, the consideration of quantum mechanics on computa-
tion and information science sprouted the idea of the quantum bits or simply
qubits, which is the analogus version of classical bits in quantum mechanical
sense.

A qubit is a two-level quantum system with quantum state vector

|ϕ〉 = ϕ1 |1〉+ ϕ2 |2〉 (1)

such that |1〉 and |2〉 are the basis, ϕ1 and ϕ2 are the probability amplitude
with

|ϕ1|2 + |ϕ2|2 = 1. (2)

The basis vectors are defined in such a way to match the indices of the tensor
elements. By convention, we also let

|1〉 =

(
1
0

)
, |2〉 =

(
0
1

)
. (3)

Therefore, equation (1) can also be written as

|ϕ〉 =

(
ϕ1

ϕ2

)
. (4)

It is not uncommon to manipulate quantum systems of more than one qubit
in quantum computation. Two qubits can be combined together by tensor
product operation such that the Hilbert space becomes the tensor product of
one another, H ∼= C2 ⊗ C2. A general two-qubit state is given as

|ψ〉 = ψ11 |11〉+ ψ12 |12〉+ ψ21 |21〉+ ψ22 |22〉 (5)

with the basis vectors |11〉, |12〉, |21〉, |22〉, and

|ψ11|2 + |ψ12|2 + |ψ21|2 + |ψ22|2 = 1. (6)

Tensor product in matrices is essentially Kronecker product. Therefore, for
example

|12〉 = |1〉 ⊗ |2〉 =

(
1
0

)
⊗
(

0
1

)
=


0
1
0
0

 . (7)
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Two-qubit states can then be represented by

|ψ〉 =


ψ11

ψ12

ψ21

ψ22

 . (8)

From the extension of this idea, we find that column matrices is one of the
natural representations of the state vectors.

Unlike the classical counterpart, there exists non-local correlation between
the quantum subsystems when two or more subsystems are taken into account.
This correlation is called entanglement and it is considered as a resource in
quantum computation. Hence, it is desirable to classify quantum states of a
given quantum system according to operations that do not alter entanglement
between the subsystems. Such kind of operations are necessarily local. Also,
operations acting on the quantum systems must not change the probability
amplitude of the quantum states, therefore it has to be unitary. We refer these
kind of operations as local unitary (LU) operations.

In two-qubit LU classification scheme, it is typical to treat Ψ = [ψij ] as
matrices and apply matrix operations on it so that calculations can be simplified
considerably (Carteret and Sudbery, 2000). Since square matrices will always
have their Schmidt decomposition, Schmidt coefficients is also used to study
the problem of separability between two qubits (Rudolph, 2005). With Schmidt
decomposition, one can extend the LU classification from two qubits to N ×N
bipartite quantum states (Sinołȩcka et al., 2002). However, when we move
to multipartite quantum systems, the simplest being the three-qubit systems,
Θ = [ϑijk] becomes a tensor (L. H. Lim. In L. Hogben, 2013). It is found
that tensors cannot be decomposed by the same manner as in two-qubit case
in general (Peres, 1995).

In 2000, de Lathauwer et al. formalized a generalized multilinear sin-
gular value decomposition, called higher order singular value decomposition
(HOSVD), where it can be applied to tensors. Similar idea was reviewed,
along with other tensor methods (Kolda and Bader, 2009). In particular, the
method of HOSVD is adopted by Bin et al. (2012) and Jun-Li and Cong-Feng
(2013) in their LU classification scheme to compare whether two multipartite
pure quantum states are LU equivalent or not. In order to complement the ex-
isting literature regarding LU classification using HOSVD, we aim to provide
a pedagogical approach on the topic using quantum system for which its LU
classification results are widely known, i.e. two qubits pure states.
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This paper is divided into three sections. Section 2 discusses about the
mathematical tools needed in this research. In Section 3, main discoveries using
HOSVD will be stated. The stabilizers for each of the two-qubit entanglement
classes will also be stated and compared with Carteret and Sudbery’s work.
Conclusion will be made in Section 4.

Unless specified, tensors are written as calligraphic letters or capitalized
Greek letters (Φ, Ψ, Θ, T , X , . . .), while small italicized letters with subscripts
will represent the tensor elements (ϕi, ψij , ϑijk, tij , . . .). Meanwhile, itali-
cized small letters are used to denote the varying indices (i, j, k, n, α, β, . . .)
and capital-italicized letters are used to indicate the index’s upper bound
(I, J, K, N, M1, M2, M, . . .). Exceptions are found when writing the ma-
trices, for example P, Q, R, X, Y, U, V, and U (n). In that case, a change in
notation will be informed beforehand.

2. Theory

2.1 Vectors, matrices and tensors

Beside the column matrix representation in equations (4) and (8), we note
that from one-qubit states (1) to two-qubit states (5), the probability amplitude
of the quantum states changes from an one-index object to a two-index object.
In general, one-index object Φ = [ϕi] is called tensor of order 1, while two-index
object Ψ = [ψij ] is called tensor of order 2.

Tensor of order 1 is usually represented as a column vector. In one-qubit
case (1), it coincides with the state vector representation (4) written as

Φ = [ϕi] =

(
ϕ1

ϕ2

)
. (9)

Meanwhile, the representation of a tensor of order 2 is a matrix. In two-qubit
case (5),

Ψ = [ψij ] =

(
ψ11 ψ12

ψ21 ψ22

)
. (10)

It is possible to include more qubits by tensor product, but now the proba-
bility amplitude of the multipartite composite quantum system will become a
higher order tensor.
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2.2 Higher order tensors and its matrix representations

As we increase the number of orders of a tensor, problem arises since we do
not have a formal way to represent and analyze higher order tensors. However,
based on the multiplication rules of tensor elements, de Lathauwer et al. in
2000 introduced a technique called matrix unfolding to represent higher order
tensors by matrices.

Definition 1 (Matrix unfolding). Assume an Nth-order complex tensor X ∈
CI1⊗CI2⊗ . . .⊗CIN . The n-th matrix unfolding, X(n), which is the element in
CIn×(In+1×In+2×...×IN×I1×I2×...×In−1), will contain the tensor element χi1i2...iN
at the position with row number in and column number equal to (de Lathauwer
et al., 2000)

(in+1 − 1)In+2In+3 . . . INI1I2 . . . In−1 + (in+2 − 1)In+3In+4 . . . INI1I2 . . . In−1

+ . . .+ (iN − 1)I1I2 . . . In−1 + (i1 − 1)I2I3 . . . In−1 + (i2 − 1)I3I4 . . . In−1

+ . . .+ in−1. (11)

Note that the tensor product of vector spaces CI1⊗CI2⊗. . .⊗CIN is isomor-
phic to CI1×I2×...×IN . In Definition 1, the notation CIn×(In+1×...×IN×I1×...×In−1)

is used to show explicitly that for an n-th matrix unfolding, we will have an
In × (In+1 × In+2 × . . .× IN × I1 × I2 × . . .× In−1) matrix.

As an example, consider a tripartite quantum system with third-order ten-
sor Θ = [ϑijk] ∈ C2 ⊗ C2 ⊗ C3 and quantum states written as

|ϑ〉 = ϑ111 |111〉+ ϑ112 |112〉+ ϑ113 |113〉+ ϑ121 |121〉+ ϑ122 |122〉+ ϑ123 |123〉
+ ϑ211 |211〉+ ϑ212 |212〉+ ϑ213 |213〉+ ϑ221 |221〉+ ϑ222 |222〉
+ ϑ223 |223〉 , (12)

where C2 ⊗ C2 ⊗ C3 ∼= C2×2×3 ≡ C12.

The matrix unfoldings are as follow:-

• First matrix unfolding, Θ(1)

Row index: i1; Column index: (i2 − 1)I3 + i3

Θ(1) ∈ C2×(2×3); Θ(1) =

(
ϑ111 ϑ112 ϑ113 ϑ121 ϑ122 ϑ123

ϑ211 ϑ212 ϑ213 ϑ221 ϑ222 ϑ223

)
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• Second matrix unfolding, Θ(2)

Row index: i2; Column index: (i3 − 1)I1 + i1

Θ(2) ∈ C2×(3×2); Θ(2) =

(
ϑ111 ϑ211 ϑ112 ϑ212 ϑ113 ϑ213

ϑ121 ϑ221 ϑ122 ϑ222 ϑ123 ϑ223

)

• Third matrix unfolding, Θ(3)

Row index: i3; Column index: (i1 − 1)I2 + i2

Θ(3) ∈ C3×(2×2); Θ(3) =

 ϑ111 ϑ121 ϑ211 ϑ221

ϑ112 ϑ122 ϑ212 ϑ222

ϑ113 ϑ123 ϑ213 ϑ223



2.3 Schmidt decomposition and HOSVD

Now we take a step back and try to focus on two-qubit systems first. Since
the tensor elements for two qubits are basically matrix elements (10), we can
introduce matrix operations on it. While eigenvalues exist only for square ma-
trices, a more general approach is to consider Schmidt decomposition, where the
existence of Schmidt coefficients is guaranteed due to the existence of singular
value decomposition (SVD).

Theorem 1 (Schmidt decomposition). Suppose |ψAB〉 is the pure state of a
composite quantum system of two finite dimensional subsystems A and B. Let
M1 and M2 be the dimension of the subsystems A and B respectively. Then,
there exist orthonormal states |iA〉 for subsystem A, |iB〉 for subsystem B such
that

|ψAB〉 =

M1M2∑
i=1

λi |iAiB〉 , (13)

where λi are non-negative real numbers satisfying
M1M2∑
i=1

λ2
i = 1 and are known

as Schmidt coefficients (Nielsen and Chuang, 2000).

Let ΛAB be the Schmidt decomposition of a second order tensor ΨAB . We
would like to point out that Schmidt decomposition in equation (13) has the
following important properties, i.e.
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1. Pseudo-diagonality: ΛAB is a diagonal matrix with Schmidt coefficients
at the diagonal entries,

ΛAB =

λ1 . . . 0
...

. . . 0
0 . . . λM

 ;

2. Ordering: Schmidt coefficients are ordered,

λ1 ≥ λ2 ≥ . . . ≥ λM , (14)

where M = min(M1,M2). While ΛAB is necessarily a diagonal matrix, the
ordering property is included as a convention.

In order to generalize Schmidt decomposition, de Lathauwer et al. (2000)
relaxed the pseudo-diagonality property into all-orthogonality condition.

Theorem 2 (Higher order singular value decomposition). Let X be an Nth-
order complex tensor, X ∈ CI1 ⊗CI2 ⊗ . . .⊗CIN . There exists a core tensor T
of X and a set of unitary matrices U (1), U (2), . . . , U (N)such that

X = U (1) ⊗ U (2) ⊗ . . .⊗ U (N)T . (15)

The core tensor T is an Nth-order complex tensor of which the subtensors
Tin=α, obtained by fixing the n-th index to α, have the properties of

1. All-orthogonality: Two subtensors Tin=α and Tin=β are orthogonal for all
possible values of n, α and β subject to α 6= β:

〈Tin=α, Tin=β〉 = 0 when α 6= β; (16)

2. Ordering:
|Tin=1| ≥ |Tin=2| ≥ . . . ≥ |Tin=In | ≥ 0 (17)

for all possible values of n,

where |Tin=i| =
√
〈Ti, Ti〉 is the Frobenius-norm and is called the n-mode

singular value of X , σ(n)
i . The vector u(n)

i is an i -th n-mode singular vector for
the respective n-mode singular value of X (de Lathauwer et al. 2000; Jun-Li
and Cong-Feng 2013).
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The all-orthogonality condition and n-mode singular value of X , σ(n)
i are

often combined together (Bin et al., 2012),

〈Tin=α, Tin=β〉 = δij(σ
(n)
i )2, (18)

where δij is the Kronecker’s delta.

3. Results and discussions

3.1 HOSVD and two qubits

Although the method of HOSVD is formulated for higher order tensors,
it is constructive to see how the relaxed condition on pseudo-diagonality (13)
into all-orthogonality (16) will affect the outcome of LU classification for two
qubits as the similar effects may appear in the LU classification of multipartite
quantum states.

Following the rules of matrix unfolding, Ψ can be written as

• First matrix unfolding, Ψ(1)

Row index: i1, Column index: i2

Ψ(1) =

(
ψ11 ψ12

ψ21 ψ22

)
(19)

• Second matrix unfolding, Ψ(2)

Row index: i2, Column index: i1

Ψ(2) =

(
ψ11 ψ21

ψ12 ψ22

)
(20)

It can be seen that in two-qubit case, matrix unfolding for higher order tensors
reduces to the usual matrix transpose operation. This is anticipated as the
matrix unfoldings Ψ(1) and Ψ(2) are elements of the space C2×(2).

Let ρAB be the density matrix of the two-qubit pure states, formed by

ρAB = |ψ〉 〈ψ| . (21)

One-particle reduced density matrices, ρA and ρB , can be obtained by partial
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trace operation of ρAB ,

ρA = TrB(ρAB), (22)

ρB = TrA(ρAB). (23)

It is found that the matrix unfoldings Ψ(1) and Ψ(2) are related to ρA and ρB
through the following relationships:

ρA =

(
|ψ11|2 + |ψ12|2 ψ11ψ̄21 + ψ12ψ̄22

ψ21ψ̄11 + ψ22ψ̄12 |ψ21|2 + |ψ22|2
)

= ΨT
(2)Ψ̄(2)

= Ψ(1)Ψ
†
(1), (24)

ρB =

(
|ψ11|2 + |ψ21|2 ψ11ψ̄12 + ψ21ψ̄22

ψ12ψ̄11 + ψ22ψ̄21 |ψ12|2 + |ψ22|2
)

= ΨT
(1)Ψ̄(1)

= Ψ(2)Ψ
†
(2). (25)

From equation (15), the HOSVD of Ψ is written as

Ψ = U (1) ⊗ U (2)T , (26)

where T is now representing the core tensor of Ψ. Let T(1) and T(2) be the
matrix unfoldings of the core tensor T . The HOSVD of Ψ then reduces to

Ψ(1) = U (1)T(1)U
(2)T , (27)

Ψ(2) = U (2)T(2)U
(1)T . (28)

The all-orthogonality conditions are given as

t̄11t12 + t̄21t22 = 0, (29)
t̄11t21 + t̄12t22 = 0, (30)

where t11, t12, t21, t22 ∈ T .
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By definition, the n-mode singular values of Ψ are

σ
(1)
1 =

√
|t11|2 + |t12|2, (31)

σ
(1)
2 =

√
|t21|2 + |t22|2; (32)

σ
(2)
1 =

√
|t11|2 + |t21|2, (33)

σ
(2)
2 =

√
|t12|2 + |t22|2. (34)

Note that the squared sum of the singular values for a particular matrix un-
folding should be equal to 1 as a consequence of equation (6), i.e.

σ
(1)2
1 + σ

(1)2
2 = 1, (35)

σ
(2)2
1 + σ

(2)2
2 = 1. (36)

From equations (24), (25), (27) to (34), we can see that

ρA = U (1)T(1)T
†
(1)U

(1)† = U (1)ρAd U
(1)†, (37)

ρB = U (2)T(2)T
†
(2)U

(2)† = U (2)ρBd U
(2)†, (38)

where ρAd = T(1)T
†
(1) and ρBd = T(2)T

†
(2) are the diagonalized one-particle re-

duced density matrix for the respective subsystems A and B. In fact, 1-mode
and 2-mode singular values correspond to the eigenvalues of ρA and ρB respec-
tively, while U (1) and U (2) diagonalizes ρA and ρB respectively (Lipschutz and
Lipson, 2008).

3.2 LU classifications

The separable states for two qubits are given as the product states of two
individual qubits. Let

|ψA〉 = a |1〉+ b |2〉 , (39)
|ψB〉 = c |1〉+ d |2〉 , (40)

then the separable states for two qubits can be written as

|ψsep〉 = |ψA〉 ⊗ |ψB〉
= (a |1〉+ b |2〉)⊗ (c |1〉+ d |2〉)
= ac |11〉+ ad |12〉+ bc |21〉+ bd |22〉 . (41)
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For separable states, the all-orthogonality conditions (29) and (30) will become

āb(|c|2 + |d|2) = 0, (42)

c̄d(|a|2 + |b|2) = 0. (43)

a and b cannot be both simultaneously zero or else |ψA〉 does not exist. Similar
argument applies to c and d. Therefore, if we choose b = d = 0 by convention,

σ
(1)
1 =

√
|ac|2 = 1, (44)

σ
(1)
2 = 0, (45)

σ
(2)
1 =

√
|ac|2 = 1, (46)

σ
(2)
2 = 0. (47)

Thus for separable states, the n-mode singular values are 1 and 0.

The above demonstration showed that the method of HOSVD can identify
between separable and entangled states of two qubits. However, since HOSVD
does not provide a canonical form, we cannot follow a similar approach used
by Carteret and Sudbery (2000). To proceed, one sensible consideration is
to preserve the algebraic structures of HOSVD after the LU group action.
Equation (18) captured such important algebraic structures of HOSVD.

Consider the action of (U, V ) ∈ SU(2)×SU(2) on the two-qubit states. We
do not use the LU group of U(1)×SU(2)×SU(2) because complex conjugation
operation in equation (18) will cancel off the phase factor of U(1). The action
of (U, V ) ∈ SU(2)× SU(2) on the two-qubit states is

U ⊗ V |ψ〉 =

2∑
ij= 1

2∑
kl= 1

2∑
mn= 1

ψij |kl〉 〈kl|U ⊗ V |mn〉 〈mn|ij〉

=

2∑
ij= 1

2∑
kl= 1

ψij |kl〉 〈kl|U ⊗ V |ij〉

=

2∑
ij= 1

2∑
kl= 1

ukiψijvlj |kl〉 =

2∑
kl= 1

2∑
ij= 1

ukiψijv
T
jl |kl〉

=

2∑
kl= 1

ψ′kl |kl〉 ,

where ψ′kl =
2∑

ij= 1

ukiψijv
T
jl. With respect to T(1), equation above can then be
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rephrased as

T ′(1) = UT(1)V
T =

(
u11 u12

−ū12 ū11

)(
t11 t12

t21 t22

)(
v11 −v̄12

v12 v̄11

)
=

(
t′11 t′12

t′21 t′22

)
, (48)

where the primed elements denote the elements after the group action.

Since the group action on the two-qubit states must preserve equation (18),
therefore the all-orthogonality conditions become,

t̄′11t
′
21 + t̄′12t

′
22 = 0⇒ ū11ū12(σ

(1)
1 − σ(1)

2 ) = 0. (49)

t̄′11t
′
12 + t̄′21t

′
22 = 0⇒ v̄11v̄12(σ

(2)
1 − σ(2)

2 ) = 0, (50)

Similarly with the n-mode singular values,

σ
′(1)2
1 = |t′11|

2
+ |t′12|

2
= |u11|2 σ(1)2

1 + |u12|2 σ(1)2
2 = σ

(1)2
1 , (51)

σ
′(1)2
2 = |t′21|

2
+ |t′22|

2
= |u11|2 σ(1)2

2 + |u12|2 σ(1)2
1 = σ

(1)2
2 , (52)

σ
′(2)2
1 = |t′11|

2
+ |t′21|

2
= |v11|2 σ(2)2

1 + |v12|2 σ(2)2
2 = σ

(2)2
1 , (53)

σ
′(2)2
2 = |t′12|

2
+ |t′22|

2
= |v11|2 σ(2)2

2 + |v12|2 σ(2)2
1 = σ

(2)2
2 . (54)

From equations (49), (51) and (52), we can see that if the 1-mode singular
values are not the same, i.e. σ(1)2

1 6= σ
(1)2
2 , then u12 = 0. For the second matrix

unfolding, equations (50), (53) and (54) showed that if the 2-mode singular
values are not equal (σ(2)2

1 6= σ
(2)2
2 ), v12 = 0. On the other hand, if the 1-mode

singular values are equal (σ(1)2
1 = σ

(1)2
2 ), we do not have restrictions on U .

Similar argument applies to the second matrix unfolding. The stabilizer group
for each of the entanglement classes is summarized below:

1. General, (σ(1)2
1 > σ

(1)2
2 , σ

(2)2
1 > σ

(2)2
2 ):

U =
(
eiθ 0
0 e−iθ

)
, V =

(
eiφ 0
0 e−iφ

)
(55)

2. Unentangled, (σ(1)2
1 = 1, σ

(2)2
1 = 1):

U =
(
eiθ 0
0 e−iθ

)
, V =

(
eiφ 0
0 e−iφ

)
(56)
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3. Maximally entangled, (σ(1)2
1 = σ

(1)2
2 , σ

(2)2
1 = σ

(2)2
2 ):

U =
( u11 u12
− ¯u12 ¯u11

)
, V =

( v11 v12
− ¯v12 ¯v11

)
(57)

For bipartite quantum systems, its one-particle reduced density matrices are
iso-spectral (Klyachko, 2006). Therefore, our list has exhausted all the possible
combinations of σ(n)2

i s.

To compare, we provide Carteret and Sudbery’s LU classification results on
two qubits below:

1. General, (λ1 6= λ2) :

θ = 0, U =
(
eiφ 0
0 e−iφ

)
, V = Ū (58)

2. Unentangled, (λ1 = 1, λ2 = 0) :

eiθ, U =
(
eiφ 0
0 e−iφ

)
, V =

(
e−i(φ+θ) 0

0 ei(φ+θ)

)
(59)

3. Maximally entangled, (λ1 = λ2) :

θ = nπ, U =
(
r s
−s̄ r̄

)
, V = ±Ū (60)

In the LU classification of two qubits by Carteret and Sudbery (2000), the
phase factor U(1) differentiates the stabilizer groups of general and unentan-
gled entanglement classes. Since the LU group action used in this work is
SU(2)×SU(2), the general and unentangled entanglement classes can only be
differentiated through their first- and second-mode singular values. Also, note
that the elements U ∈ SU(2) and V ∈ SU(2) are complex-conjugate related in
Carteret and Sudbery’s work, but this relationship is destroyed when Schmidt
decomposition is substituted by HOSVD. Despite that the stabilizer group for
each of the entanglement classes is not unique in our case, the distribution
of 1-mode and 2-mode singular values between the three entanglement classes
are distinct and can be used to differentiate between the three entanglement
classes. In this sense, our work agrees with the results anticipated in the paper
by Jun-Li and Cong-Feng (2013).
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We conclude that by having relaxation on pseudo-diagonality in Schmidt
decomposition, we lose information on the complex conjugate relationship be-
tween the group elements U, V ∈ SU(2) which acts on the first and second
qubit respectively. Meanwhile, the complex conjugate operation in (18) ren-
ders the same stabilizer group for the general and unentangled entanglement
classes. Further studies need to be done in order to refine our LU classifica-
tion results on two qubits to match with the results posted by Carteret and
Sudbery.

4. Conclusion

The two-qubit states decomposed by higher order singular value decompo-
sition (HOSVD) can be used to distinguish between the three entanglement
classes by comparing between the n-mode singular values. When the local
unitary (LU) orbits are calculated, we found that due to the relaxation of
pseudo-diagonality of Schmidt decomposition and complex conjugation opera-
tion in the algebraic structures of HOSVD, the stabilizer group is not unique
for each of the entanglement classes.
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